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Introduction 

 

The first Intellectual Output of the DigiwatRO project had as objective to develop, test, and 

validate illustrative concepts for digital surveillance, automation, and cybersecurity in the water 

sector. 

The impact of the obtained results was observed at three levels: scientific, academic, and 

industrial. 

(1) from a scientific point of view the impact can be observed through the papers that resulted 

from the current project. The research undertaken in this project already forms the basis for 

related research. In addition, the analysis methods developed in this project will be used in 

future research in the digitalization of the water sector. 

(2) at the academic level, the impact of the project results places the research teams in the 

landscape of digitization of the water sector. Each member of the team has gained 

experience in this highly promising field, an impact that will be seen in the long term. This 

is one of the most significant results as the teams will be able to propose new international 

projects in the field of digitization of the water sector. The expertise of the teams can be 

demonstrated by the results disseminated from this project. 

(3) At industry level, the teams' expertise is used to transfer technology to the private sector. 

The workshop organized at ETFA 2023 in this project involved the presence of companies 

from the automation sector. 

Water sector and especially the water utilities are undergoing a rapid digitalization leading to 

new investments, new equipment, generating a huge amount of online data, increased remote 

monitoring and control. The information generated by this project are grossly underutilized for 

process control. Thus, one aspect is to explore and develop concepts to improve the data quality 

and their use for better process m0onitoring. Another great danger which the water utilities are 

facing is the risk of cyber threats. The most water utilities are not aware of these dangers and 

objective is to increase the awareness, preparedness, and the rapid recovery in case of an event. 

Within the issues generated by the water sector, three main scientific areas have been identified 

and investigated in this project: 

- Process Monitoring and Control Systems 

- Virtual Sensors 

- Analysis of the Cybersecurity Incidents in the Water Sector 

In establishing these areas, the structure and equipment of the treatment plants in Romania 

(Galați) and Norway (Oslo) were considered. Three papers resulted from investigating these 

scientific areas and were presented at the 28th International Conference on Emerging 

Technologies and Factory Automation – ETFA 2023, Sinaia, Romania, sept. 12 – 15 

(https://2023.ieee-etfa.org/main/static/files/program/ConferenceProgram_Complete.pdf): 

- Ratnaweera H, Nair A, Hykkerud A, Sivchenko N, Ratnaweera D, Condrachi L. Achieving 

legislative requirements in wastewater treatment using digital tools. ETFA 2023 

- Ghinea LM, Miron M, Ratnaweera H. A Deep Learning Approach for Faults Recognition 

of Dissolved Oxygen Sensor in Wastewater Treatment Plants. ETFA 2023 

- Țîru AE, Vasiliev I, Diaconu L, Vilanova R, Voipan D, Ratnaweera H. Integration of ANN 

for Accurate Estimation and Control in Wastewater Treatment. ETFA 2023  

https://2023.ieee-etfa.org/main/static/files/program/ConferenceProgram_Complete.pdf
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1. Process Monitoring and Control Systems 

 

Fault diagnosis in wastewater treatment plants (WWTPs) is important to protect communities 

and ecosystems from toxic elements discharged into water. In this sense, fault identification of 

sensors plays an important role as they are the key components of the water plants control, 

especially because environmental legislation is very strict when referring to failures or 

anomalies in WWTPs. 

 

1.1.A Deep Learning Approach for Faults Recognition of Dissolved Oxygen Sensor in 

Wastewater Treatment Plants 

 

This case study evaluates the performances of two deep learning algorithms (FFNN - 

Feedforward Neural Network and 1DCNN - Convolutional Neural Network) for identifying 4 

different mechanical faults which can occur in DO sensor of a Wastewater Treatment Process 

(WWTP). All the faults were analyzed via Benchmark Simulation Model no 2, developed by 

the IWA Task Group (Alex at al., 2008). The structure of the plant is identical to that of the 

wastewater treatment plant in Galati city. For this purpose, were implemented fault blocks in 

Matlab Simulink 2022a and developed two neural classifiers in Google Colaboratory (Colab) 

environment with the Python open-source libraries: Scikit-Learn 1.2.2 and TensorFlow 2.12 

with Keras, a high- level Deep Learning API integrated. 

 

In this study are analyzed the following faults scenarios: 

1. Bias fault – occurs due to a constant offset (𝑣) in the sensor output measurements. Bias 

fault injection can be implemented by adding a constant value to the sensor output. As a 

result, a shift from the normal value is produced on the DO output, mathematically defined: 

 

𝑠(𝑡)  =  ℎ(𝑡)  +  𝜂 +  𝑢, 𝑢 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (1.1) 

 

where 𝑠(𝑡)  =  ℎ(𝑡)  +  𝜂 is the expected output of the sensor without the presence of faults, 

ℎ(𝑡) is the output of the sensor at time 𝑡 and 𝜂 is the noise. 

2. Stuck fault - occurs when a sensor becomes “stuck” in a particular state or position, failing 

to respond to changes of the system. Stuck fault injection means that the sensor output is 

locked at a fixed value 𝑣 for a temporary or permanent period. As a result, a complete 

failure is produced on the DO output, mathematically defined: 

  

𝑠(𝑡)  =  𝑢, 𝑢 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (1.2) 

 

3. Spike fault – when large amplitude peaks occur at the DO sensor output. The spike fault 

injection is performed, as the name indicates, by large amplitude peaks at constant time 

intervals (𝑟). To mathematically define a spike fault, a constant bias 𝑏𝑡 is added to the 

elements of the normal signal, as below: 
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𝑠(𝑡)  =  ℎ(𝑡)  +  𝜂 +  𝑏𝑡 (1.3) 

∀ 𝑡 ∈  𝑢 ×  𝑟  

 

where 𝜈 =  {1, 2, … } is a set of natural numbers and 𝑟 is the interval in which the spikes 

occur in the sensor output, with 𝑟 ≥  2. 

4. Precision degradation (PD) – occurs as a loss of precision in the sensors or control systems 

used to monitor and control the treatment process. PD fault injection is performed by adding 

a noise with zero mean and high variance to the output of DO sensor, mathematically 

defined: 

 

𝑠(𝑡) = ℎ(𝑡) + 𝜂 + 𝑣 ~𝑁(0, 𝛿𝑣
2), 𝛿𝑣

2 ≫ 𝛿𝑛
2     (1.4) 

  

where 𝛿𝑣
2 is the noise with zero mean and high variance. 

 

Table 1.1 shows the duration and the start day of each fault scenario that was analyzed. 

 

Table 1.1 Faults of DO sensor signal 

Fault Start [day] Duration [hours] 

Bias 280 480 

Stuck 350 600 

Spike 400, 420, 440, 460 48 

PD 500 720 

 

According to (Alex at al., 2008), the plant model is simulated during a period of 609 days. Data 

is evaluated at each 15 minutes interval starting from 245th day. The following faults scenarios 

(Fig. 2.1-2.4) were analyzed in our study: bias, stuck, spike and precision degradation (PD). 

The bias fault scenario from Fig. 1.1 is generated in the DO sensor, during a period of 20 days. 

This type of fault is characterized by a constant difference between the true value and the faulty 

DO sensor output of +1.5 mg/L (Liu et al., 2022). 

 

Fig. 1.1. Bias fault of DO sensor 
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The stuck fault scenario from Fig. 1.2 is induced in the DO sensor during a period of 25 days. 

This type of fault indicates that the DO sensor measurements freeze at a fixed value, in this 

case scenario at 2 mg/L and is not responding anymore to any variation of DO concentration. 

This fault is considered a complete failure which could be a temporary or permanent issue. 

 

 

Fig. 1.2. Stuck fault of DO sensor 

 

The spike fault scenario from Fig. 1.3 is generated in the DO sensor output during 4 – time 

intervals with different amplitude, consisting of 2 days each. 

 

 

Fig. 1.3. Spike fault of DO sensor 

 

The precision degradation (PD) fault scenario from Fig. 1.4 is implemented in the DO sensor, 

over a period of 30 days. This type of fault consists of adding a noise with zero mean and high 

variance to the sensor output. 

Deep learning techniques are intensively used in the field of fault diagnosis in WWTPs. 

Moreover, these processes are complex, dynamic, and nonlinear, often prone to failures, 

uncertainties, and disturbances. From this perspective, it’s important to have performant tools 

such as Neural Networks (NNs) to identify with high precision and efficiency any mechanical 

faults which can occur in these processes, especially in case of sensors used to control energy 

consumption and discharge quality (Chi and Guo, 2019; Mamandipoor et al., 2020). 
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Fig. 1.4. Precision degradation (PD) fault of DO sensor 

 

For example, in the case of dissolved oxygen sensors, the aeration systems depend on the values 

measured by the DO sensor, so any failure in this signal can affect the system normal operation 

(Salles et al., 2023). 

In this sense, the current study compares two neural models, FFNN vs. 1DCNN. The purpose 

is to establish which DL classifier is capable of accurately identifying the 5 operating states of 

DO sensor faults in WWTP: normal (class 0), bias (class 1), stuck (class 2), spike (class 3) and 

precision degradation (PD) (class 4). 

 

 

Fig. 1.5. Deep Learning architectures: a) FFNN and b) 1DCNN 

 

The architecture of each DL is presented in Fig. 1.5. In the case of FFNN, the layers are added 

sequentially: input layer (10 neurons, ReLU - activation function), 1 hidden layer (16 neurons 
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and ReLU - activation function) and output layer (5 neurons and Softmax - activation function). 

To overcome overfitting, the activity regularization is set to 0.01 in the input layer of the neural 

model. However, in the case of 1DCNN, the layers are: Conv1D layer (filters=32, 

kernel_size=1, activation='relu'), Dropout layer (dropout rate=0.2), Conv1D layer (filters=16, 

kernel_size=1, activation='relu'), MaxPool1D layer (pool_size=1), Flatten layer, Dense layer 

(16 neurons, activation='relu') and Dense layer (5 neurons, activation='softmax'). 

Both DLs are compiled with Categorical Cross Entropy Loss function, Adam optimizer 

(learning rate=0.001) and Accuracy metric for evaluating the model during training and 

validation. Also, the training is performed with the fit() method from Keras API and iterated 

over 100 epochs. From the dataset are selected 80% for training and 20% for testing. 

The hyperparameters of the neural networks were selected around the values suggested by the 

KerasTuner, a general purpose hyperparameter tuning library. 

The performances metrics used to evaluate the neural model are: 

 

- Accuracy 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1.5) 

 

where TP – true positive, TN – true negative, FP – false positive and FN – false negative, 

all obtained from the confusion matrix. 

 

- Precision 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1.6) 

 

where Precision – represents the positive predicted data. 

 

- Recall 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1.7) 

 

where Recall – calculates the percentage of all data identified in a relevant class. 

 

- F1-score 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (1.8) 

 

where F1-score – represents the harmonic mean of the model precision and recall. 



8 
 

 

The DLs obtained FFNN - 98.32% overall training accuracy and 98.30% overall testing 

accuracy and 1DCNN - 92.76% overall training accuracy and 92.90% overall testing accuracy. 

The confusion matrices of DLs are presented in Fig. 1.6. The confusion matrix of FFNN 

demonstrates that the model classifies correctly in a proportion of 98.3% (11494 data from a 

total of 11693) and erroneous in a proportion of 1.7% (199 data from a total of 11693). 

However, the confusion matrix of 1DCNN shows that the model classifies correctly in a 

proportion of 92.90% (10863 data from a total of 11693) and erroneous in a proportion of 7.1% 

(830 data from a total of 11693). Based on these results, it becomes obvious that FFNN 

outperforms 1DCNN. This was highlighted in the classification report from Figure 1.7, with a 

red dotted line. 

 

 

Fig. 1.6. Confusion matrices of DLs: a) FFNN and b) 1DCNN 

 

According to Fig. 1.7, the best classification results are obtained in the case of Bias sensor fault 

with FFNN (99.49% Precision, 98.99% Recall and 99.24% F1-score) and the worst results are 

in the case of PD sensor fault with 1DCNN (87.93% precision, 0.08% recall and 0.16% F1-

score). This indicates that PD support data from 1DCNN are imbalanced in comparison with 

the other classes. Thus, collecting more data might be required to improve the 1DCNN model 

performance. Nevertheless, our study reveals that FFNN has better performances and 

adaptability than 1DCNN and is a very powerful DL tool for enhancing DO sensor fault 

recognition in WWTPs. 
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Fig. 1.7. Metrics (F1-score, Recall, Precision) of FFNN and 1DCNN 

 

The FFNN is very efficient compared to 1DCNN for enhancing the fault recognition of the 

dissolved oxygen sensor. 

 

1.2.Control of a wastewater treatment process using linear and nonlinear model predictive 

control 

 

Control of the wastewater treatment process is not a trivial task, since the system is nonlinear, 

features large time con- stants and delays, and the interaction between variables is important 

(Luenberger, 1979). Thus, Model Predictive Control (MPC) framekwork is a good approach 

for such a demanding task, because of one important advantage: MPC has the ability to handle 

complex constraints and nonlinearities, which are typical of wastewater treatment processes; 

additionally, MPC can handle process changes and disturbances, such as changes in influent 

quality and flow rate, by dynamically adjusting the control actions (Necoara, 2008). Thus, MPC 

is widely used in today’s process industry due to its ability to handle constrained and 

multivariable control problems (Socha, 2007). For linear systems, the MPC problem is usually 

posed as a convex quadratic problem (QP), while for nonlinear systems one needs to solve a 

highly nonconvex optimization problem (DeCarlo, 1989).  

ACADO Toolkit is a software environment and algorithm collection written in C++ for 

automatic control and dynamic optimization (Ariens et al., http://www.acadotoolkit.org). It 

provides a general framework for using a great variety of algorithms for direct optimal control, 

includ- ing model predictive control as well as state and parameter estimation. It also provides 

(stand-alone) efficiently imple- mented Runge-Kutta and BDF integrators for the simulation of 

ODE’s and DAE’s (Ariens et al., 2010). For the nonlinear MPC problem of the wastewater 

treatment process we use ACADO to solve the corresponding problem. However, since the 

http://www.acadotoolkit.org/
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problem is highly nonconvex, ACADO requires long CPU times to solve it. Hence, we propose 

an alternative where we linearize the system at each sampling time, we derive the 

corresponding linear MPC problem and solve it with a quadratic solver from Matlab. From 

simulations, we observe that the second approach is more efficient, since the closed loop 

behaviors are similar for linear and nonlinear MPC approaches, but the linearization based 

approach is faster in terms of CPU time than ACADO.  

 

Nonlinear model predictive control 

A nonlinear system is a system in which the change of the output is not proportional to the 

change of the input (Dasarathy, 1970). We write the nonlinear system that we work with as 

(Khalil 2002): 

 

 �̇� = 𝑓(𝑥, 𝑢) (1.11) 

 

where 𝑥 ∈  𝕏 and 𝑢 ∈  𝕌. Thus, consider the following optimal control problem: 

 

 min
𝑢(∙)

∫ 𝐿(𝑥, 𝑢)𝑑𝑡 + 𝑉(𝑥(𝑇))
𝑇

0
 (1.12) 

 

subjected to the following equality constraints: 

 

�̇� = 𝑓(𝑥, 𝑢) 

 𝑥(0) = 𝑥0 given 𝑥 ∈  𝕏 and 𝑢 ∈  𝕌 

 

where the term 𝐿(𝑥, 𝑢) represents the stage cost, and 𝑉(𝑥(𝑇)) the terminal cost. In abstract 

terms, this is an optimization problem with constraints. For reference tracking, we consider the 

reference signals 𝑥𝑟𝑒𝑓 and 𝑢 𝑟𝑒𝑓. Then, 𝐿(𝑥, 𝑢) = ‖𝑥 − 𝑥𝑟𝑒𝑓‖
𝑄𝑥

2
+ ‖𝑢 − 𝑢𝑟𝑒𝑓‖

𝑅𝑢

2
 and 

𝑉(𝑥(𝑇)) = ‖𝑥𝑇 − 𝑥𝑇
𝑟𝑒𝑓

‖
𝑃𝑥

. In order to simplify the algorithms we use, we approximate the 

nonlinear system that we work with by using the principle of Taylor series. We begin with a 

system of the form: 

 

 �̇� = 𝑓(𝑥, 𝑢), 𝑥 ∈  𝕏, 𝑢 ∈  𝕌 (1.13) 

 

Let (�̅�, �̅�) denote an equilibrium point, that is 𝑓(�̅�, �̅�) = 0. Then, applying the Taylor series on 

the function 𝑓 around the equilibrium point, we obtain (Socha, 2007): 

 

 𝑓(𝑥, 𝑢) ≈ 𝑓(�̅�, �̅�) +
𝜕𝑓

𝜕𝑥
(�̅�, �̅�)(𝑥 − �̅�) +

𝜕𝑓

𝜕𝑢
(�̅�, �̅�)(𝑢 − �̅�) (1.14) 
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We denote 𝛿𝑥 = 𝑥 − �̅� and 𝛿𝑢 =  𝑢 − �̅� and we get the linearization 𝛿�̇� =
𝜕𝑓

𝜕𝑥
(�̅�, �̅�)𝛿𝑥 +

𝜕𝑓

𝜕𝑢
(�̅�, �̅�)𝛿𝑢, which can also be written as: 

 

 𝛿�̇�(𝑡) = 𝐴𝑥𝛿𝑥(𝑡) + 𝐵𝑢𝛿𝑢(𝑡) (1.15) 

 

where 𝐴𝑥 =
𝜕𝑓

𝜕𝑥
(�̅�, �̅�) and 𝐵𝑢 =

𝜕𝑓

𝜕𝑢
(�̅�, �̅�). If the system is discretized using a sampling period 

∆𝑇, it can be written as (Jacod and Protter, 2011): 

 

 𝛿𝑥𝑘+1 = 𝐴𝑥𝛿𝑥𝑘 + 𝐵𝑢𝛿𝑢𝑘 (1.16) 

 

Linear model predictive control 

In general, a system with linear constraints over the states and inputs has the following form 

(Chen, 1984): 

 

𝑥𝑘+1 = 𝐴𝑥𝑥𝑘 + 𝐵𝑢𝑢𝑘 

𝑙𝑏𝑥 ≤ 𝑥𝑘 ≤ 𝑢𝑏𝑥, ∀𝑘 ∈ {0, … , 𝑁 − 1} 

 𝐶𝑢𝑢𝑘 ≤ 𝑑𝑢 (1.17) 

 

where 𝐶𝑢 ∈ ℝ𝑛𝑖×𝑛𝑥 and 𝑑𝑢 ∈ ℝ𝑛𝑖 . Then, the optimal control problem for reference tracking is: 

 

min
𝑥𝑘,𝑢𝑘

1

2
∑‖𝑥𝑘 − 𝑥𝑘

𝑟𝑒𝑓
‖

𝑄𝑥

2
+ ∑‖𝑢𝑘 − 𝑢𝑘

𝑟𝑒𝑓
‖

𝑅𝑢

2
𝑁−1

𝑘=0

𝑁−1

𝑘=0

+ ‖𝑥𝑁 − 𝑥𝑁
𝑟𝑒𝑓

‖
𝑃𝑥

 

 𝑥0 = 𝑥, 𝑥𝑘+1 = 𝐴𝑥𝑥𝑘 + 𝐵𝑢𝑢𝑘 (1.18) 

𝑙𝑏𝑥 ≤ 𝑥𝑘 ≤ 𝑢𝑏𝑥, 𝐶𝑢𝑢𝑘 ≤ 𝑑𝑢, ∀𝑘 ∈ {0,… ,𝑁 − 1} 

 

where 𝑥𝑘
𝑟𝑒𝑓

 and 𝑢𝑘
𝑟𝑒𝑓

 are certain reference values given for the state and control variables 

vectors of the system, over the prediction horizon, and the weighted norm has the following 

form: 

 

‖𝜈𝑘 − 𝜈𝑘
𝑟𝑒𝑓

‖
𝑉

2
= (𝜈𝑘 − 𝜈𝑘

𝑟𝑒𝑓
)
𝑇
𝑉(𝜈𝑘 − 𝜈𝑘

𝑟𝑒𝑓
) 

 

Also, the matrices 𝑄𝑥 and 𝑅𝑢 are both considered positive- semidefinite, ∀𝑘.  

The problem considered previously can be considered a convex quadratic optimization 

problem. To solve it, first we denote the decision variable as 𝑥 ∈ ℝ𝑛𝑥+𝑛𝑢 and write it as 

following (Necoara, 2013): 
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 𝑥 = [𝑢0
𝑇𝑥1

𝑇𝑢1
𝑇𝑥2

𝑇 …𝑢𝑁−1
𝑇 𝑥𝑁

𝑇] (1.19) 

 

The equality constraints of the optimization problem are linear and come from defining the 

dynamics of the system that is controlled. To formulate the quadratic problem, they can be 

concatenated in a single block constraint, taking into account the way in which the decision 

variable was defined. Mathematically, this means: 

 

 𝐴𝑥 = 𝑏, 𝐴 ∈ ℝ𝑁𝑛𝑥×𝑁(𝑛𝑥+𝑛𝑢), 𝑏 ∈ ℝ𝑁𝑛𝑥 (1.20) 

 

The matrices 𝐴 and 𝑏 have the following form: 

 

𝐴 =

[
 
 
 
−𝐵𝑢 𝐼𝑛𝑥

0 0 ⋯ 0 0 0

0 −𝐴𝑥 −𝐵𝑢 𝐼𝑛𝑥
⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ −𝐴𝑥 −𝐵𝑢 𝐼𝑛𝑥]

 
 
 

 

 

𝑏 = [

𝐴𝑥𝑥0

0
⋮
0

] 

 

This concatenation makes sense because the equations that describe the dynamics of the system 

over the entire prediction horizon can be written as: 

 

 

 

The structure of the matrix 𝐴 is a tridiagonal block, and the only nonzero term of the vector 𝑏 

depends on the initial state, which will be updated at each iteration of the algorithm. The 

inequality constraints can also be rewritten in the form of a single 𝐶𝑥 ≤  𝑑 constraint. The 

inequalities corresponding to the states of the system can be written as: 

 

[
𝐼𝑛𝑥

−𝐼𝑛𝑥

] 𝑥𝑘 ≤ [
𝑢𝑏𝑥

−𝑙𝑏𝑥
] 
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Therefore, the matrices 𝐶 ∈ ℝ𝑁(2𝑛𝑥+𝑛𝑖)×𝑁(𝑛𝑥+𝑛𝑢) and 𝑑 ∈ ℝ𝑁(𝑛𝑥+𝑛𝑢) have the following form: 

 

𝐶 =

[
 
 
 
 
𝐶𝑢 0 0 ⋯ 0 0
0 𝐶𝑥 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ 𝐶𝑢 0
0 0 0 ⋯ 0 𝐶𝑥]

 
 
 
 

 

 

𝑑 ∈

[
 
 
 
 
𝑑𝑢

𝑑𝑥

⋮
𝑑𝑢

𝑑𝑥]
 
 
 
 

 

 

Regarding the rewriting of the objective function in the standard convex QP form, a vector 

must be constructed with a structure similar to the decision variable 𝑥, but which concatenates 

the reference values over the entire prediction horizon. We denote it by 𝑥𝑟𝑒𝑓 and its form is as 

follows: 

 

 𝑥𝑟𝑒𝑓 = [(𝑢0
𝑟𝑒𝑓

)
𝑇
(𝑥1

𝑟𝑒𝑓
)
𝑇
(𝑢1

𝑟𝑒𝑓
)
𝑇
(𝑥2

𝑟𝑒𝑓
)
𝑇
…(𝑢𝑁−1

𝑟𝑒𝑓
)
𝑇
(𝑢𝑁

𝑟𝑒𝑓
)
𝑇
] (1.21) 

 

If we also consider the diagonal matrix 𝑄 ∈ ℝ𝑁(𝑛𝑥+𝑛𝑢)×𝑁(𝑛𝑥+𝑛𝑢), written as: 

 

𝑄 =

[
 
 
 
 
𝑅𝑢 0 0 ⋯ 0 0
0 𝑄𝑥 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ 𝑅𝑢 0
0 0 0 ⋯ 0 𝑃𝑥]

 
 
 
 

 

 

then the cost function in the optimization problem can be rewritten as: 

 

 

 

Next, we denote 𝑞 = −𝑄𝑥𝑟𝑒𝑓 and by neglecting the term 
1

2
(𝑥𝑟𝑒𝑓)𝑇𝑄𝑥𝑟𝑒𝑓, we obtain the 

problem in convex QP form: 
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  (1.22) 

 

To further our research, we decided to reproduce the results obtained in ACADO by writing an 

algorithm in MATLAB. The goal is the same: stabilize the wastewater treatment system in the 

equilibrium points. Thus, we use linearization on the continuous system, then apply 

discretization, as shown in the following scheme: 

Basically, we take the continuous system, transform it into a discrete one and then apply 

linearization. Mathematically, we have the following forms: 

 

 �̇� = 𝐹𝑐(𝑥, 𝑢) 

 (1.23) 

 𝑥𝑘+1 = 𝐹𝑑(𝑥𝑘, 𝑢𝑘) (1.24) 

 

We denote by 𝐹𝑐 the continuous function and by 𝐹𝑑 the discrete one. 

The first step would be to discretize using the Euler method. Thus, we obtain: 

 

 𝑥𝑘+1 = 𝑥𝑘 + Δ𝑇𝐹𝑐(𝑥𝑘, 𝑢𝑘) 

 (1.25) 

 

Considering 𝑥𝑘+1 = 𝐹𝑑(𝑥𝑘, 𝑢𝑘), we get that: 

 

 𝐹𝑑(𝑥, 𝑢) = 𝑥 + Δ𝑇𝐹𝑐(𝑥, 𝑢) (1.26) 

 

The next step is linearization. The linear approximation of a function is the first order Taylor 

expansion around the point of interest. Therefore, we can write: 

 

 

 

We denote: 
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Because 𝐹𝑑(𝑥, 𝑢) = 𝑥 + h𝐹𝑐(𝑥, 𝑢), the matrices can be also written as: 

 

  (1.27) 

 

 

Fig. 1.8. Discretization and linearization scheme 

 

Fig. 1.8. displays the discretization and linearization scheme for the predictive control. 

 

A simplified mathematical model was used to describe the behavior of the wastewater treatment 

plan (Ghinea et al., 2023). The model has 4 state variables: 𝑋 – biomass concentration, 𝑆 – 

substrate concentration (the organic load), 𝐷𝑂 – dissolved oxygen and 𝑋𝑟 – concentration of 

recycled biomass. 

 

The ACADO Toolkit 

ACADO practically applies optimal control on a nonlinear system. In order to do this, we 

consider the following cost: 
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  (1.28) 

Here, 𝑥 represents the states, 𝑥 =  [𝑋 𝑆 𝐷𝑂 𝑋𝑟 ]
𝑇 and 𝑢 represents the control variable, 𝑢 =

 𝑊 . Our purpose is to obtain values up to 40 mg/l for the substrate 𝑆, while keeping the values 

for the dissolved oxygen in the range 1 − 3 mg/l. Moreover, the input variable, 𝑊, must be kept 

under 100 m3/h. Thus, we consider the input constraint 0 ≤  𝑢 ≤  100, the output constrain 

0 ≤  𝑦 ≤  40 and the state constraint 1 ≤  𝑥(3)  ≤  3. In this way, the quality of the water is 

obtained in accordance with national standards in the field, while maintaining a reasonable 

consumption of electricity. This consumption, which is the main consumption in the case of 

wastewater treatment plants, is determined by the blowers used for aeration.  

In ACADO,we create a matrix 𝑄 that contains 𝑄𝑘 and 𝑅𝑘 from the cost above, 𝑄𝑘 =

[

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

] and 𝑅𝑘  = 1. Basically, we  

want to stabilize our system using the state 𝑆 and the control variable 𝑊. This means that the 

cost we consider has roughly the form min𝑊 ∫𝑆2 + 𝑊2. All that remains is for us to choose 

the equilibrium points for the system. We also consider the value for the stepsize as ∆T = 0.5.  

We consider two sets of equilibrium points:  

Case 1. rr = [223.8 38.9 2.6 447.6 33].  

Case 2. rr = [228.7 37.1 2.9 457.4 35].  

We observe that both the states and the control variable reach the values we wanted to obtain, 

no matter what equilibrium points we set.  

 

 

Fig. 

1.9 

ACADO simulations for Case1 Fig. 

1.10 

ACADO simulations for Case2 
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Optimal Control in Matlab 

 

In Matlab, we simulate the optimization problem for the following form: 

 

𝑥𝑘+1 = 𝐴𝑥𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝑎 

 

where 𝑎 = 𝐹𝑐(𝑥0, 𝑢0) − 𝐴𝑥𝑥0 − 𝐵𝑢𝑢0. 

In order to do this, we first build a function that calculates the matrices that we denote 𝐴𝑥 and 

𝐵𝑢 using (1.27), then use these two matrices, as well as 𝑄𝑥 = [

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

] and 𝑅𝑢 = 1 that 

we used in ACADO (since the cost is the same) in another function that creates the elements 

needed for the sparse QP form. This second function results in the elements 𝑄, 𝑞, 𝐴, 𝑏, 𝐶, 𝑑 that 

make up the following QP form: 

 

 min
𝜓

1

2
𝜓𝑇𝑄𝜓 + 𝑞𝑇𝜓 (1.29) 

 

with the constraints 𝐴𝜓 ≤ 𝑏 and 𝐶𝜓 ≤ 𝑑. 

In the script that calls these functions we first initialize the states and control variables as 𝑥0 =
[200; 90; 2; 320] and 𝑢0 = 30. Then, according to the scheme in Figure 1.8, we compute 𝑢𝑘

∗ ,  

𝑘 =  {0,1, . . . , 𝑁} using either the command quadprog (a solver for quadratic objective 

functions with linear constraints), or the Matlab Software CVX (a Matlab-based modeling 

system for convex optimization; CVX turns Matlab into a modeling language, allowing 

constraints and objectives to be specified using standard Matlab expression syntax). Whichever 

of these two we decide to use, the next steps are the same. 

We use only the first element of 𝑢𝑘
∗ , 𝑘 =  {0,1, . . . , 𝑁}, that is 𝑢0

∗ , then we compute the next 

value for the state vector, 𝑥1 using the discreet function 𝐹𝑑 calculated in the current value for 

𝑥, that is 𝑥0 and 𝑢0
∗  that we have just found. All that remains is to set 𝑥0 and 𝑢0 that are going 

to be used for the next iteration: 

 

𝑥0 = 𝑥1 

𝑢0 = 𝑢0
∗  

 

Just like with ACADO, we give ∆𝑇 =  0.5 and run the program for the same two cases of 

equilibrium points. 

We observe that both the states and the control variable reach the values we wanted to obtain, 

independent of the equilibrium points we set. 

To conclude, we compare the values we obtained with ACADO Toolkit and with the Optimal 

Control algorithm we created: 
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Concerning CPU time, the algorithm we built in Matlab is much faster than the one we created 

with ACADO Toolkit (200 seconds versus 2 full days). When it comes to stabilization, it is 

clear from the graphics in the previous section that the algorithm in ACADO stabilizes faster 

than the Optimal control one; both algorithms are able to reach the equilibrium points for the 

states and control variable we set for them to obtain. 

 

 

Fig. 

1.11 

ACADO vs. Linearization for Case1 Fig. 

1.12 

ACADO vs. Linearization for Case2 

 

 

1.3.Process Surveillance and Control in Membrane Treatment Processes 

 

Large, available data and the rapid improvement in computational power have alleviated the 

recent progress in numerical optimization models allowing optimization in hyperdimensional 

spaces where analytical solutions are too expensive. 

The future of digitalization of membrane material design and optimization is an AI-enabled 

structure reconstruction and generation, prediction of properties and in-service performance 

for membrane materials. 

MBR process has two main drawbacks: membrane fouling and high energy consumption. Most 

of the energy required is for air scouring. Membrane fouling prevention and energy 

consumption in MBR can be balanced by:  

- monitoring the permeability of the membranes in real-time  

- regulating the air scour flow accordingly  

It can be obtained an average reduction in the air scour flow rate of 13% - 20%, corresponding 

to 14 - 22% energy saving (SmartAirMBR). 

Dynamic ultrafiltration enables to mitigate fouling issues and allows operation with higher 

fluxes than conventional crossflow operation. However, fouling is not fully avoided, so a flux 

estimation is required for determining the best operation scenarios. Due to the limited dynamic 

system understanding, machine learning models are proposed. Machine learning methods 

applicable: neural networks, decision trees, random forest, regression Gaussian processes and 

classical methods such as space-state and ARMAX (Autoregressive Moving Average with 

Exogenous Inputs). The novelty of the approach lies in the proposed combination of several 

models to achieve a prediction with low uncertainty. 



19 
 

The selection of optimal materials can be done through machine learning. Machine learning 

can predict inherent membrane parameters (rejection or flux) using only molecular structural 

information.  Molecular structural information of the solutes, solvents, and membranes can use 

for interpretation of features of the solute, solvent, and membranes affect the rejection and flux. 

Using graph neural networks, modifying effect of functional groups, rings, or even single bonds 

and atoms in a molecule – leading to optimal structures. A database (www.osndatabase.com) 

shows features of over 500 different chemical compounds in 10 different solvents and four 

different membranes and some models. 

Polymer chemistry plays a vital role in membrane separation performance, processability in 

solvents, and ability to selectively capture gases like CO2. The performance parameters can be 

variables such as the solubility, diffusivity, permeability, ideal and multicomponent selectivity, 

swelling and miscibility in common solvents. Machine learning based systems for faster 

screening can work even with very limited information like molecular chemistry. 

Porous energy materials are essential components of many energy devices and systems, the 

development of which have been long plagued by two main challenges:  

- the “curse of dimensionality”, i.e. the complex structure–property relationships of energy 

materials are largely determined by a high dimensional parameter space.  

- low efficiency of optimization/discovery techniques for new energy materials 

The solution is the digitalization of porous energy materials, transforming all material 

information into the digital space using reconstruction and imaging data and fusing this with 

various computational methods. The rapid characterization, the prediction of properties, and 

the autonomous optimization of new membrane materials can be achieved by using advanced 

mathematical algorithms combined with various ANN tools. 

Membrane fouling detection/prediction can be done by spectroscopic fingerprinting. Online 

monitoring of fouling potential enable smart control for managing fouling. The spectroscopic 

methods are likely to be a key concept, but indicators are not yet defined. 11 UV-Visible 

indicators, 19 Fluorescence Emission-Excitation Matrix (FEEM) and 2 infrared scattering 

indicators were scanned during a 151 days period. The membrane pore blocking and gel/cake 

fouling potential were found to be well correlated with UV-VIS and 15 FEEM. UV-VIS and 

FEEM scanning can be integrated in a model to predict and detect fouling. Real-time scanning 

of UV-VIS and FEEM now enables faster and even real-time detection. 

Early-warning protocol for membrane cleaning by predicting, diagnosing, and producing 

warnings (e.g. biofouling phenomena in MBR plants) can be implemented. Biofouling progress 

was recursively predicted utilizing Kalman filter method – to identify the dominant fouling 

mechanism, incorporating genetic algorithm. Membrane cleaning warning rule based on 

fouling cumulative sum control chart – alarms for operational failure in the targeted plant. 

 

  

http://www.osndatabase.com/
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2. Virtual Sensors 

 

2.1.Integration of ANN for Accurate Estimation and Control in Wastewater Treatment 

 

The current study centers on the deployment of an ANN-based Soft Sensor for the purpose of 

forecasting pollutant concentrations in WWTPs. The primary aim of the soft sensor under 

consideration is to facilitate control strategies by ensuring that the levels of pollutants remain 

within the prescribed limits. The precise prediction of effluent limit violations and the proactive 

mitigation of their consequences can lead to a reduction in operational expenses and an 

improvement in overall performance for wastewater treatment plants. 

The ongoing research involves the utilization of an Artificial Neural Network (ANN) for a 

specific application. The inputs to the ANN comprise the influent and effluent measurements 

of the Wastewater Treatment Plants (WWTPs) collected over a period of one year, with a 

sampling interval of 15 minutes. The measurements were acquired through the utilization of 

the BSM2M, using a computer-simulated model of a versatile wastewater treatment plant (see 

Fig. 2.1). The structure of the plant is identical to that of the wastewater treatment plant in 

Galati city. More comprehensive understanding of the issue can be found in (Satin et al., 2016; 

Pisa et al., 2021; Pisa, 2022). 

 

 

Fig. 2.1. BSM2 architecture of a Wastewater Treatment Plant, displaying Default Control 

strategies. 𝑄𝑝𝑜 represents the primary clarifier overflow, 𝑄𝑎 and 𝑄𝑟 the internal and external 

recirculation fluxes, and 𝑄𝑖𝑛 and 𝑄𝑒 the influent and effluent, respectively. 

 

In Fig.2.2, we illustrate the problem under investigation. The inputs to the system comprise 

influent and available measurements obtained from the WWTPs. These measurements include 

water flows and nutrient concentrations, such as the ammonium concentration in the fifth 

bioreactor tank (𝑆𝑁𝐻,5), the output flow from the first clarifier (𝑄𝑝𝑜), the environmental 
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temperature (𝑇𝑎𝑠), and the total suspended solids (𝑇𝑆𝑆) (Barbu et al., 2018). The main goal 

employs an ANN to predict the effluent concentrations (𝑦�̂�). The inputs chosen for this 

application are analyzed to determine their predictive capabilities. It relies on a prediction 

methodology that involves the utilization of two-stacked Long-Short Term Memory (LSTM) 

cells. 

 

Fig. 2.2. Artificial Neural Network (ANN)-based Soft Sensor. The data used for input and 

output are representative of the influent and effluent measurements, respectively. 

 

These cells are a type of artificial neural network that is characterized by its gating mechanism. 

As per the research findings presented in references (Goodfellow et al., 2016; Pisa, 2022), 

every LSTM cell is comprised of 75 hidden neurons per ANN that is contained within the cell. 

The analysis is centered on the examination of ammonium (𝑆𝑁𝐻,𝑒) concentrations, which are 

among the most commonly occurring pollutant nutrient concentrations detected in wastewater 

treatment plants (WWTPs). Infrequent occurrences of peaks in ammonium (𝑆𝑁𝐻,𝑒) 

concentrations have been observed. The prediction task carried out by the Soft Sensor based 

on ANNs presents a significant challenge due to the infrequent incidence of these events and 

the imbalanced distribution of the data. 

 

Data preparation 

The optimization of performance and reduction of complexity in Artificial Neural Networks 

(ANNs) are heavily reliant on the implementation of data preprocessing techniques (Naduvil-

Vadukootu et al., 2017). The issue of imbalanced data within industrial processes presents a 

challenge for conventional approaches when dealing with regression problems. In order to 

address these challenges, a new approach to data preprocessing has been developed. This 

innovative set of mechanisms will be thoroughly examined in the subsequent sections, where 

their unique features and benefits will be outlined in detail. 

 

A. Sliding Window 

We propose implementing a novel sliding window methodology to improve the arrangement 

and maintain the temporal coherence within the dataset. The present methodology incorporates 

two fundamental variables, namely the window length (WL) and the prediction horizon (PH). 

In the present study, the configuration of WL and PH was established as follows:  

- A Window Length (WL) of 10 hours has been selected as an appropriate time frame to retain 

the values observed at each sampling time and encompass the preceding measurements. This 

approach is aimed at capturing a broad historical context of the data being analyzed. 
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- A Prediction Horizon (PH) of 4 hours has been considered. This parameter defines the 

period during which predictions of effluent concentrations can be provided beforehand, thus 

facilitating proactive decision-making. 

The utilization of the sliding window mechanism in an ANN system enables it to effectively 

incorporate both current and past measurements, thereby leveraging the significant temporal 

correlation present in the data. 

The sliding window technique is implemented in such a way that a novel measure is generated 

with every movement of the window, while the oldest measure is removed in accordance with 

the First-In-First-Out (FIFO) principle. As illustrated in Fig. 2.3, the system assimilates the 

preceding 10-hour recorded data for each novel measurement. The architectural specifications 

of the considered WWTP have determined the retention time requirements to be 14 hours. The 

specific configuration of the sliding window parameters has been analyzed to meet these 

requirements. Further insights into the underlying architecture can be found by referring to 

reference (Satin et al., 2016). 

 

 

Fig. 2.3. Structure of the Sliding Window. The WWTP holding time is the same as the sum of 

the Window Length and the Prediction Horizon. 

 

B. Data Normalization 

We propose the utilization of data normalization techniques as a potential solution to address 

the issue of data heterogeneity. The Z-score adjustment method is one way we do this. When 

rare events happen, the latter can be prone to bias (Garcia et al., 2015). The Z-score 

normalization process is computed as follows: 

 

 𝑥𝑡 = 
𝑥−𝐸[𝑥]

√𝐸[(𝑥−𝐸[𝑥])2]
 (2.1)                          

 

It shows the data that needs to be normalized and the data that has been normalized. By using 

this normalization method, we hope to standardize the way the data is spread out and lessen 

the effect of extreme values, making the ANN's input more fair. 
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C. K-Fold Based Training 

When working with large time series datasets, it is not uncommon to encounter imbalanced 

data, and effluent signals are a prime example of this disparity. Failure to address the issue of 

imbalanced data can result in biased predictions that favor the more frequently represented 

values, particularly those falling below certain thresholds (Bergmeir et al., 2018). 

To tackle this challenge, K-Fold has emerged as a viable data preprocessing technique during 

the learning stage (Barbu et al., 2018). This approach operates based on two fundamental 

principles: dividing the dataset into equally sized subsets and the execution of training 

processes. In our specific case, the dataset comprises the influent and effluent measurements 

from the BSM2 model of WWTP.  

The number of 5 K-folds has been carefully chosen to allocate 70% of the complete dataset for 

training the ANNs while reserving 30% for testing and validation purposes. Within this 30%, 

15% is designated for validation, while the remaining 15% serves as the test subset. The 

objective is to obtain distinct prediction models through each training process, resulting in a 

total of models. The dataset is utilized for each model, with subsets employed for training and 

one subset dedicated to testing and validation. 

Ultimately, the model that exhibits superior prediction accuracy among all training processes 

is selected for the final application. A visual depiction of the K-Fold methodology is presented 

in Fig.2.4. 

 

Fig. 2.4. K-Fold method, a commonly used technique in machine learning for model 

validation and selection. colored data. 

 

Evaluation of the soft sensor 

The performance evaluation (Fig. 2.5) of the proposed data preprocessing techniques for time-

series industrial data relies on the predictions generated by the ANN-based Soft Sensor. The 

present study utilizes three distinct metrics to evaluate the performance of the model. These 

metrics include Root Mean Squared Error (𝑅𝑀𝑆𝐸), Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸), 

and Coefficient of Determination (𝑅2). 

The RMSE is a commonly used metric in statistical analysis to measure the difference between 

predicted and actual values. It is calculated using the following formula: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)2𝑁

𝑖=1  (2.2) 
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where 𝑦�̂� represents the 𝑖𝑡ℎ prediction of the effluent concentration and 𝑦𝑖 denotes the 

corresponding target value.  A lower RMSE value indicates accurate predictions. 

 

 

Fig. 2.5. The performance assessment of the fifth k-fold, displaying the ideal outcome for the 

applied data set (ANN with TSS), and the optimal MSE values for our data.  

 

The MAPE is another commonly used metric in the field of predictive modeling. It is calculated 

by taking the mean of the absolute percentage errors in the prediction process: 

 

 𝑀𝐴𝑃𝐸 = 
1

𝑁
∑ |

𝑦𝑖−𝑦�̂�

𝑦𝑖
| ∙ 100𝑁

𝑖=1   (2.3) 

 

This metric is often preferred over other error metrics as it provides a more intuitive 

understanding of the accuracy of the model. 

The coefficient of determination, commonly known as 𝑅2 is a statistical measure that evaluates 

the ability of an ANN model to account for the variability observed in the data. This metric 

quantifies the proportion of the total variation in the dependent variable that can be explained 

by the independent variables included in the model. The calculation is derived through the 

utilization of a specific formula: 

  

𝑅2 = 
(∑ (𝑦�̂�−�̂�) ∙𝑁

𝑖=1  (𝑦𝑖−𝑦))2

∑ (𝑦�̂�−�̂�)2 ∙ 𝑁
𝑖=1 ∑ (𝑦𝑖−𝑦)2 𝑁

𝑖=1

 (2.4) 

 

The symbol �̂� represents the mean of the predicted values and 𝑦 denotes the mean of the target 

values. This notation is commonly used in statistical analysis and machine learning models.  

The combination of these metrics offers a thorough assessment of the effectiveness of the 

Artificial Neural Network (ANN) based Soft Sensor. 

The results of the evaluation indicate that the ANN model exhibits remarkable accuracy in its 

predictions. The present study has developed a model that is capable of accounting for 
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approximately 97% of the data variance, as indicated by the 𝑅2 value. This high level of 

variance accounted for by the model has resulted in precise predictions, which are further 

supported by the low values of RMSE and MAPE. Specifically, the ANN model has yielded 

RMSE and MAPE values of 0.048 and 3.54%, respectively. These findings suggest that the 

developed model is highly accurate and reliable in predicting the outcomes of interest. The 

precision of the predictions is demonstrated in Fig. 2.6 and Fig. 2.7, despite the presence of 

some unfavorable predictions, where the ANN displays remarkable accuracy in predicting 

𝑆𝑁𝐻 values. The present study highlights that the aforementioned enhancements are predicated 

on prognostications derived from the complete one-year dataset as input. 

 

 

Fig. 

2.6 

𝑆𝑁𝐻,𝑒 predictions using the ANN-based Soft 

Sensor and K-Fold implementation, not taking 

into consideration the TSS for the trained ANN. 

Fig. 

2.7 
𝑆𝑁𝐻,𝑒 predictions using the ANN-based Soft 

Sensor and K-Fold implementation, also 

considering the TSS as an input (Fig.2.2). 

 

2.2.Achieving legislative requirements in wastewater treatment using digital tools 

The Urban Wastewater Treatment Directive (UWWD) requires member states to remove 

phosphates and organic matter from domestic wastewater depending on the size of the 

wastewater treatment plant (WWTP) and the environmental sensitivity of the location (Council 

Directive 91/271/EEC of 21 May 1991). Organic matter in wastewater, which is commonly 

measured as Chemical Oxygen Demand (COD) or Biochemical Oxygen Demand (BOD), can 

be efficiently removed with biological wastewater processes. While the chemical treatment 

process- coagulation- is extremely efficient in removing phosphates, it does not remove the 

dissolved fractions of COD/BOD in wastewater (Ratnaweera and Fetting, 2015). This has 

caused a big challenge for WWTPs which do not have biological stages. 

Although Norway is not a member of the EU, it obliges to fulfil the requirements of the 

UWWD. 23% of the population of Norway is connected to chemical, 42% to chemical-

biological and only 9% to pure biological WWTPs (https://www.ssb.no/en). This has caused 

extensive discussions on the fulfilment of the EU UWWD, and as an intermediate measure, 

Norwegian environmental authorities have permitted their WWTPs not to focus on the 

COD/BOD removal requirement. However, in recent years, this practice was changed and all 

WWTPs above 10 000 pe are now required to follow the EU UWWD. 

The UWWD requires >75% removal or <125 mg/l COD in effluent and >70% removal or<25 

mg/l BOD in effluent (Council Directive 91/271/EEC of 21 May 1991). Since the coagulation 

can remove on the suspended fraction of COD/BOD and that fraction is usually 40-60%, the 

general perception is it is impossible to achieve the UWWD requirements. The consequence is 

expanding the existing Norwegian WWTPs with biological stages, which will cost hundreds 

of millions of Euros. 

https://www.ssb.no/en
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Although the pure suspended fraction, which is measured as Suspended solids (SS) larger than 

1 µm, coagulation may efficiently remove colloids, which are larger than 10 ηm. This may 

open new possibilities to have an extended removal of COD/BOD reaching the required 

removal levels. 

During the coagulation process, an inorganic salt, often aluminium or iron, is added to the 

wastewater. The resulting hydrolysis process with phosphates removes colloids and particles 

while the chemical reactions remove phosphates. 

The efficiency of the coagulation process critically depends on the coagulant dosage, which 

has to be optimal for the influent water quality at all times, which changes rapidly during the 

day. And the optima coagulant dosage depends on the flow of wastewater, its pH, particles, 

and phosphates content. Nevertheless, only the incoming flow is considered in practice when 

calculating the dosage, sometimes with overriding pH to secure an optimal hydrolysis process. 

This practice result in suboptimal results due to under- or overdosing. 

Although the need to consider particles and phosphates in addition to the flow and pH is well 

acknowledged, the lack of affordable and accurate sensors to measure these parameters in real-

time as well as the lack of efficient conceptual models for wastewater coagulation has 

prevented implementing them. 

This paper presents the experience with the use of surrogate systems to monitor water quality 

and use them in process control to achieve COD/BOD requirements in a coagulation plant 

eliminating the need for expanding with a biological stage. 

 

Process Description 

Full-scale experiments were carried out at the Søndre Follo WWTP (SFR) in Vestby which is 

situated 60 km south of Oslo. SFR treats wastewater from 24 000 persons and treats 3500-9000 

m3/day, depending on the weather/precipitation. The current discharge permit required >90% 

removal of total-Phosphates while the plan must achieve the secondary treatment requirement. 

The SFR is a mechanical-chemical treatment plant. 

The plant has installed several physical online sensors measuring the flow, suspended solids, 

conductivity, pH temperature in the inlet, pH after coagulation, and suspended solids after 

sedimentation (effluent). Surveillance data are collected every 10 minutes and stored in the 

SCADA system. total-P were measured daily average samples at the WWTP and weekly by 

accredited laboratories. COD and BOD were measured in 24 daily samples by accredited 

laboratories annually as required by the legislation. These data were supplemented by several 

sampling campaigns which measured hourly samples during dry and wet weather and on 

weekdays and weekends at the DOSCON laboratory. Samples were analyzed using Norwegian 

Standard Methods. Analytical results were cross-validated using several analytical methods. 

The analytical data were used to calibrate hybrid soft sensors for total-P and total-COD and 

total-BOD using a concept presented by (Nair et al., 2022). The surveillance data from physical 

sensors and soft sensors were integrated and used for further analysis. 

The coagulant dosing was determined using a concept developed by DOSCON, using 

multivariate statistics combined (Manamperuma et al., 2017) which was further improved 

using Artificial Neural Networks. The concept considers all critical parameters critical for the 

coagulation process unlike the commonly used flow proportional dosing with pH overriding, 

thus particles and phosphates are directly or indirectly included. 
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Accuracy of the software sensor 

Although the DOSCON concept secured >90% removal of phosphates, SFR's performance 

referring to organic matter (COD and BOD) was not in compliance with the legislation. To 

further optimize the COD/BOD removal, we considered integrating total-P and total-COD 

surveillance in the algorithms for coagulant dosing. 

Figs 2.8 and 2.9 present the model accuracy for hybrid sensors for total-P and total COD. In 

these figures, we use R2 as an indicator for the accuracy of the prediction against measured 

values (True data). The predictions were satisfactory considering the wide variations in the 

influent wastewater quality. 

 

 

Fig 2.8. Model accuracy of the prediction of Total-P 

 

With further tuning of the dosing algorithms, the plant has recorded performances complying 

with the secondary treatment requirements, as presented in Figs 2.10, 2.11, and 2.12, for total-

P, COD, and BOD respectively. 
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Fig 2.9. Model accuracy of the prediction of total-COD 

 

The model accuracies obtained for the two parameters were considered satisfactory and were 

integrated into further optimization of the coagulant dosing determination. 

 

 

Fig 2.10. Removal efficiency of Total-P. Compliance requirement >90% 
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Fig 2.11. Removal efficiency of COD. Compliance requirement >75% 

 

 

Fig 2.12. Removal efficiency of BOD. Compliance requirement >70% 

Influent and effluent water quality vary rapidly during the day and only with real-time 

measurements, one can respond swiftly to address any performance weaknesses. Therefore, it 

is valuable to have real-time surveillance regarding the compliance parameters, such as total-

P, COD, and BOD. While there are physical sensors for COD are available in the market, there 

are no similar sensors for phosphates. The only near-real-time option was to use online 

analysers. Such equipment is quite expensive (15 000-50 000€ each), while hybrid soft sensors 

provide a good alternative for a fraction of the cost. Figs 2.8 and 2.9 confirm the validity of the 

models used in soft sensors and provided comparable results with the accredited lab values.  

Fig 2.8 presents the accuracy of the soft sensor model for Total-P, which seems good. Fig 2.9 

presents the accuracy of the COD soft sensor model. Although it is not as good as the Total-P 

model, it serves the purpose of optimizing the COD removal efficiencies. The weaker model 

accuracy is a result of limited surveillance data available for calibration of the model, and with 

the growth of surveillance data, the model is becoming better and more robust.  

The soft sensors are integrated into the operational real-time dosage estimating algorithms. 

Instead of having suspended solids as the target parameter, Total-P was introduced. Fig 2.10 

presents the compliance reporting values for Total-P, twice per month, over 2 years. They are 

well above the compliance levels (>90%), except for occasional lower values, which are also 

permitted. Further investigation on these exceptional conditions revealed that they are either 

due to extraordinary inflows drastically reducing the sedimentation times or/and plant 
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maintenance activities. 

 

 

Fig 2.13. Removal efficiency of Total-P with real-time values 

 

Fig 2.13 presents the real-time data for Total-P for 12 days, compared with lab values. The 

real-time values from soft sensors revealed that the treatment efficiency could vary between 

85-98% to result in 91-95% average results. These values were continuously displayed at the 

WWTP making operators to be more aware of the conditions, while the modeling team could 

work more concretely on reducing events with far below compliance events. The work is still 

ongoing to eliminate both too-low and too-high treatment efficiencies, and real-time 

surveillance and virtual soft sensors enable this process. 

Fig 2.11 presents the COD removal efficiency over 2 years, based on compliance reporting. 

The compliance requirement is either >75% removal or <125 mg/l in the effluent. Fig 5 presents 

similar results for BOD. Apart from two occasions over two years, COD results were within 

compliance levels while all BOD values were within the limits. 

The general perception is that achieving the secondary treatment requirements for organic 

matter removal is impossible to realize only with coagulation. However, the above-presented 

results document the capability of achieving the compliance requirements in a mechanical-

chemical plant. When the suspended fraction of COD and BOD are normally <60%, achieving 

>75% and 70% respectively, deserved further elaboration on the underlying mechanisms. 

Coagulation removes not only the suspended fraction (>1µ) but also the colloidal fraction (0.1-

1µm). Thus, it is reasonable to assume also the colloidal fraction of COD and BOD will be 

removed during coagulation. We have not yet analyzed the colloidal fraction of COD in the 

wastewater from SFR WWTP, but the analysis from the literature is provided in Table 2.1. 

 

Table 2.1. COD Fractions Reported in Other Studies 

Total 

COD 

Suspended 

COD 

Colloidal 

COD 

Dissolved 

COD 

Colloidal + 

suspended Reference 

699 409 71 219 69 % 

(Tawfik et al., 2010) 

 

733 485 64 185 75 % 

803 603 49 151 81 % 
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334 137 39 80 76 % 

(Drewnowski et al., 2020) 

 

650 413 24 213 67 % 

630 442 36 152 76 % 

590 408 39 143 76 % 

548 384 33 131 76 % 

451 313 32 106 76 % 

821 630 37 154 81 % 

620 444 44 132 79 % 

1390 1143 73 174 87 % 

1001 765 64 172 83 % 

797 632 53 112 86 % 

750 558 44 148 80 % 

 

According to the data presented in Table 2.1, the total suspended and colloidal fraction of 

wastewater could reach even 87%. Thus it seems logical to expect >75% removal of COD. 

 

Fig 2.14. Removal efficiency of Suspended solids with real-time values 

However, even after a comprehensive destabilization process with coagulation, the final 

removal of the said fraction will depend on the comprehensiveness of the separation process. 

Even in well-functioning situations, the removal rates for suspended solids varied between 92-

98%. Fig 2.14 presents the suspended solids removal efficiencies at SFR WWTP, which shows 

the removal efficiency varied between 91-99% except for a shorter period with 82%. Thus, to 

secure >75% removal of COD, it is, therefore, necessary to have suspended + colloidal 

fractions of well above 80%. 

The dosing control algorithm at the SFR WWTP is based on inlet and outlet-suspended solids. 

Considering the reflections on the removal of colloidal fractions in addition to the suspended 

fraction, we may then anticipate an even better prediction of the optimal dosage, if both 

fractions can be considered. However, real-time measurement of colloidal fractions of particles 

or organic matter with physical sensors is not realistic at present. Nevertheless, we believe that 

it would be possible to estimate it using a hybrid soft sensor. Particles in wastewater are 

measured both as turbidity and suspended solids, thus there could be a possibility to derive an 

estimate for the sum of colloidal and suspended fractions using a combination of these two 

parameters supplemented with other physical sensors in developing a hybrid soft sensor. 

Whether it would be possible to derive the total colloid and suspended fraction only with a 

suspended solids sensor and a turbidity sensor is also an interesting question, which needs to 

be elaborated on in the future. 
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3. Analysis of the Cybersecurity Incidents in the Water Sector 

 

Water utilities  are essential for health, safety and well-being, and  they are considered as critical 

infrastructures (CIs) whose disruption of service can lead to significant loss from economic, 

public safety and environmental standpoints (Igure et al., 2006; Moraitis et al., 2020). 

Supervisory Control and Data Acquisition (SCADA) systems provide  monitoring and control 

capabilities for real-time operations of the water utilities (Rasekh et al., 2016) .  In the past, 

SCADA systems relied on air-gapped networks and non-standard protocols to protect them 

from cyberattacks (Igure et al., 2006). Currently, these networks have been connected to 

corporate networks and the internet. There have also been advances in using standard 

networking protocols for communications  (Cheung et al., 2006). These changes have made 

SCADA systems more available for attackers to target remotely through the Internet from 

anywhere in the world (Christiansson and Luiijf, 2008). 

Although the integration of the SCADA and corporate networks has significantly improved the 

efficiency of the systems, it has also increased the attack surfaces and has exposed both physical 

and cyber infrastructures to attacks  (Housh and Ohar, 2018; Ramotsoela et al., 2019; Rasekh 

et al. 2016). For example, a successful attack in the water sector can lead to chemical 

contamination, physical damage, or communications disruption between the network elements 

and the SCADA system. Several cyberattacks such Harrisburg water plant (2006), Northern 

Colorado water system (2019), Israel’s water system (2020), Florida wastewater (2021) 

(Sharmeen et al., 2021) exemplify the cybersecurity issues facing the water sector. The number 

of reported cyberattacks on the water sector is growing and making them the third most targeted 

sector (ICS-CERT 2016). 

Understanding the various dimensions of these cybersecurity incidents and how they have 

evolved over time can provide insight for developing effective strategies to prevent or mitigate 

similar attacks in the future (Miller and Rowe, 2012).  Hassanzadeh et al., 2020 reviewed 

cybersecurity incidents in the water sector. While their study contributes significantly for 

helping to understand the nature of cybersecurity incidents in the water sector, the range of 

options considered in their classification scheme and the limited number of cybersecurity 

incidents reviewed limits the ability to gain deeper insight into techniques, trends and patterns 

related to previous cybersecurity incidents (Hassanzadeh et al., 2020). Furthermore, their 

analysis does not correlate to international frameworks such as MITRE’s ATT & CK for ICS. 

 

Cybersecurity Incidents 

In this section we review the cybersecurity incidents in the water sector and analyse their attack 

mechanism (adversarial behaviour) using the tactics and techniques of the MITRE & CK 

(Alexander et al., 2020; Mitre, 2022).  Table  provides the comprehensive cyber incidents in 

the water sector, and each incident contains a name, year of occurrence, confirmed/suspected 

threat actor, attack technique and type, targeted component/layer, and impact. 

 

1. Maroochy Shire sewage incident  

a. Summary of incident  

In March 2000, Maroochy Shire Council experienced problems with its new wastewater 

system (Slay and Miller 2008). Communications sent by radio links to wastewater pumping 

stations were being. Pumps did not work correctly, and alarms that were supposed to notify 

system engineers of faults did not activate as expected (Hemsley and Fisher 2018). Initially, 
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they thought the problem was due to the new system, but after some time, they noticed that 

the system was hacked. An engineer who was monitoring every signal passing through the 

system, discovered that someone was hacking into the system and deliberately causing the 

problems. The water utility hired a team of private investigators who located the attacker 

and alerted police. The attacker, Vitek Boden, was arrested and eventually jailed; he was 

an employee of a contractor that supplied IT/control system technology. 

b. Attack mechanism  

Mr. Boden used a laptop computer and a radio transmitter to take control of 150 sewage 

pumping stations  (Slay and Miller 2008). Over a three-month period, he released one 

million liters of untreated sewage into a stormwater drain from where it flowed to local 

waterways. The attacker was physically located by the authorities and found in the 

possession of a laptop with a stolen software for SCADA reconfiguration installed, along 

with Motorola M120 two-way radio and PDS control devices. Evidence retrieved from the 

laptop also indicated that commands from the system program run at least 31 times, which 

matched the behavior observed in the company’s logs (Makrakis et al., 2021). The attack 

was motivated by revenge on the part of Mr. Boden after he failed to secure a job with the 

Maroochy Shire Council.  

 

The adversarial tactics and techniques used during this cyberattack are mapped using the 

MITRE ATT&CK framework in Table 3.1.  

 
Table 3.1 Adversarial tactics and techniques used to conduct the Maroochy Shire sewage 

incident  

Tactic  Technique (ID) 

Initial access Wireless Compromise (T0860) 

Execution   

Persistence   

Privilege Escalation   

Defense evasion   

Credential Access  

Discovery  Remote system discovery (T088) T0808 

Lateral Movement  Default credentials (T0812) 

Collection  Automated collection (T0802) 

Command and Control   

Inhibit Response Function   

Impair Process Control   

Impact   

 

2. Bowman Avenue dam incident   

a. Summary of the incident   

Iranian hackers gained unauthorized access to the SCADA systems of New York’s Bowman 

Avenue Dam in 2013 which allowed them to gather information on water levels, 

temperature, and the status of the sluice gate (Shimon et al., 2015). The Bowman Dam 

controls storm surges, and Its SCADA system was connected to the Internet via a cellular 

modem (Hemsley and Fisher 2018).This access would allow the attacker to remotely 

operate and manipulate the dam’s sluice gate. However, in this instance, the sluice gate had 

been manually disconnected for maintenance at the time of the attack. 
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b. Attack mechanism  

The attackers exploited a vulnerability to identify an unprotected computer that controlled 

sluice gates and other functions of the dam. The attacker detected the vulnerability through 

“Google Dorking,” a process of performing advance Google searches to detect 

vulnerabilities, and then implemented other technologies to successfully exploit the system 

(Germano, 2019).  

The adversarial tactics and techniques used during this cyberattack are mapped using the 

MITRE ATT&CK framework in Table 3.2. 

 

Table 3.2 Adversarial tactics and techniques used to conduct the Bowman Avenue dam 

incident  

Tactic  Technique (ID) 

Initial access Internet accessible device (T0883) 

Execution   

Persistence   

Privilege Escalation   

Defense evasion   

Credential Access  

Discovery   

Lateral Movement   

Collection   

Command and Control   

Inhibit Response Function  Activate Firmware update(T0800) 

Impair Process Control  Brute force(T0806) 

Impact  Damage to property (T0879) 

 

3. Kemuri water company incident  

a. Summary of the incident  

Verizon Security Solutions reported that an undisclosed water company experienced a 

cyberattack on its ICSs by a suspected Syrian hacktivist group in 2016 (Andreeva et al. 

2016; Hemsley and Fisher, 2018). Verizon gave a pseudonym of “Kemuri” to the water 

company (KWC) to protect its identity due to security reasons. The assessment took place 

after employees became suspicious of an intrusion due to irregular value and duct behavior  

(Makrakis et al. 2021). Attacker managed to manipulate the system to alter the amount of 

chemical entering the water supply and affect water treatment and production capabilities, 

causing water supply recovery times to increase (Hemsley and Fisher 2018).  

 

b. Attack mechanism  

KWC’s plant had an old IBM AS/400-based SCADA system for managing the PLCs to 

regulate the flow of water and chemicals by managing valves and ducts in the plant. 

According to reports published by the security firm Vericlave (Vericlave, 2018) and other 

sources (Adepu et al., 2020; Alladi et al., 2020) the primary attack vectors used in the 

security breach of KWC’s internal AS/40 system could have been a Structured Query 

Language (SQL) injection attack and email phishing. The attackers extracted login 

credentials for the system from the front-end web server to access the plant’s water control 

software which was also running on the same AS/400 system. As this system was central 
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to most IT operations in this plant, access to this control system allowed hackers to control 

most of the other equipment in the plant (Desc4). Although the attackers were able to 

manipulate the valves that control the chemical flow, there was no impact on the plant’s 

operation. Personal information of about 2.5 million customers was also reported to have 

been leaked from their database (Alladi et al., 2020). 

The adversarial tactics and techniques used during this cyberattack are mapped using the 

MITRE ATT&CK framework in Table 3.3.   

 

Table 3.3 Adversarial tactics and techniques used to conduct the Kemuri water company 

incident  

Tactic  Technique (ID) Description  

Initial access -Exploit public facing 

application (T819) 

-Phishing (T1566) 

-SQL injection on payment portal 

website, combined with spear-

phishing for missing info 

Execution    

Persistence    

Privilege Escalation    

Defense evasion  Exploitation for 

Evasion(T0820) 

 

Credential Access   

Discovery  Remote system discovery 

(T0486)  

 

Lateral Movement  -Valid Accounts (T0859) - Webserver held files with plaintext 

credentials and IP of internal IBM 

AS/400 server  

 

Collection    

Command and 

Control  

Commonly used port 

(T0885) 

 

Inhibit Response 

Function  

Activate firmware update 

(T0800) 

 

Impair Process 

Control  

-Modify parameter 

(T0836) 

-Attackers manipulated chemical 

flow twice, but alarms caused 

operators to intervene and prevent 

real impact (Modify parameter)  

 

Impact  ATT&CK Enterprise 

(Exfiltration) 

- Attackers exfiltrated 2.5 million 

customer data records 

 

4. Israel water treatment incident  

a. Summary of the incident  

In April 2020, a cyber-attack targeted the industrial control systems of the Israel Water 

Authority’s water treatment facility (Kovacs, 2020b). According to a statement from 

Israel’s National Cyber Directorate, the attempted attack targeted the command-and-

control systems of Water Authority’s wastewater treatment plants, pumping stations, and 

sewage infrastructure (Kovacs, 2020a). Attacker gained access to water treatment systems 
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and tried altering water chlorine levels. Israeli authorities issued an alert urging water 

treatment facilities affected by the attack to immediately reset the passwords and other ICS 

operators to consider additional security measures on their publicly accessible operational 

systems. 

b. Attack mechanism  

The adversarial tactics and techniques used during this cyberattack are mapped using the 

MITRE ATT&CK framework in Table 3.4.                     

  

Table 3.4 Adversarial tactics and techniques used to conduct the Israel water treatment incident 

Tactic  Technique (ID) Description  

Initial access -Internet Accessible Device 

(T883) 

-Sites likely internet-connected 

using cellular gateways, rendering 

PLCs either directly or indirectly 

internet exposed  

Execution    

Persistence    

Privilege 

Escalation  

  

Defense evasion    

Credential Access   

Discovery    

Lateral Movement  Default credentials (T0812) - Reportedly no or default 

credentials on gateways and PLCs  

Collection    

Command and 

Control  

-Commonly Used Port (T0885) 

-Standard application layer 

protocols (T0869) 

-Attacker communicated with 

PLCs using standard protocols on 

common ports  

(Siemens S7comm 

(102/TCP),Modbus TCP 

(502/TCP), GE SRTP 

(18245/TCP, 18246/TCP) 

Inhibit Response 

Function  

  

Impair Process 

Control  

-Modify Parameter (T836) Attackers modified control logic 

and parameters  

Impact  -Manipulation of control (T831) -Attempted to increase chlorine 

levels  

 

5. Florida water treatment incident 

a. Summary of the incident  

In February 2021, a unidentified cyber threat actors  tried to manipulate Sodium Hydroxide 

(Lye) levels in the water treatment facility in Oldsmar town, Florida; USA (FBI 2021; Mass 

2021). It has been publicly acknowledged that an operator machine had a remote access 

software package installed and accessible to the Internet. This led the attack to be carried 

out by gaining access to remote workstation using TeamViewer and manipulation of control 

set points for the dosing rate of Sodium Hydroxide (NaOH) into the water. The attacker 

raised the NaOH does setpoint from its normal setting of 100 part-per-million (ppm) to 
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11,100 ppm (Serino and Miller, 2021). The operator quickly noticed the mouse cursor 

moving on his screen and changed the Sodium Hydroxide levels to normal operating 

parameters so that pH monitoring alarms did not detect a level beyond acceptable 

parameters.  

 

b. Attack mechanism  

The cyber actors likely accessed the system by exploiting cybersecurity weakness, 

including poor password security, and an outdated operating system. According to the joint 

FBI, the Cybersecurity and Infrastructure Security Agency (CISA), the Environmental 

Protection Agency (EPA), and the Multi-State Information Sharing and Analysis Center 

(MS-ISAC) cybersecurity advisory (FBI 2021),  it is possible that a desktop sharing 

software, such as TeamViewer, may have been used to gain unauthorized access to the 

system.  

The adversarial tactics and techniques used during this cyberattack are mapped using the 

MITRE ATT&CK framework in Table 3.5.   

 

Table 3.5 Adversarial tactics and techniques used to conduct the Florida water treatment 

incident  

Tactic  Technique (ID) Description  

Initial access -Exploit public-facing application (T0819) 

-External remote services (T0866) 

 

Execution  Execution through Graphical User 

Interface (T0823) 

 

Persistence  Valid accounts (T0859)  

Privilege Escalation    

Defense Evasion    

Credential Access   

Discovery    

Lateral Movement    

Collection    

Command and 

Control  

  

Inhibit Response 

Function  

  

Impair Process 

Control  

-Modify parameter (T0836) 

-Unauthorized command message (T0855) 

 

Impact  -Loss of safety (T0880) -Safety of lives 

drinking that water 

would have been lost 

-Manipulation of control (T0831) -the chemical level 

control put in place 

was manipulated.  

 

 

6. Summary of cybersecurity incidents in the water sector  

Table 3.6 presents a summary of cybersecurity incidents in the water sector. The table 

highlighted the incident name, year, and county in which the attack was reported. It also lists 
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the target component/layer (corporate network -CN, supervisory network -SN, local control 

network -LN, field or instrumentation network -FN), impact of the attack, the 

technique/method used to launch the attack, and vulnerable component. 

 

Table 3.6 A summary of cybersecurity incidents in the water sector  

Cyber 

Incident 

Name 

Year Attack 

location 

Target Threat actor ATT & CK technique 

(initial compromise) 

Attack type 

Salt River 

Project 

1994 United 

States 

CN Individual Internet accessible 

device (T0883) 

Malware(bac

kdoor) 

Maroochy 

Shire 

Sewage Spill 

2000 Australia SN Individual Wireless compromise 

(T0860) 

Disgruntled 

Employee 

Baseline 

Audit 

Uncovers 

Virus in 

Water 

Control 

System 

2003 Australia LN Unknown  Virus 

Trojan 

Backdoor on 

Water 

SCADA 

System 

2004 Canada SN Unknown Spear phishing 

attachment (T0865) 

Malware 

(trojan 

backdoor) 

Routine 

Audit of 

SCADA 

Laptop 

Identifies 

Virus 

2005 Australia CN Unknown  Virus 

Pennsylvani

a Water 

Company 

Hack 

2006 United 

States 

CN Unknown Internet accessible 

device (T0883) 

malware 

California 

Canal 

System 

Hack 

2007 United 

States 

SN Individual 

(Insider) 

 Disgruntled 

employee 

Wastewater 

Treatment 

District 

Hacked 

2012 United 

States 

CN Individual 

(insider) 

 Disgruntled 

employee 

Iranian 

cyberattack 

on New 

York dam 

2013 United 

States 

SN Organized 

group 

Internet accessible 

device (T0883) 

Targeted 

attack 

TGB water 

station hacks 

2014 United 

States 

CN Individual 

(insider) 

 Disgruntled 

employee 

European 

Public utility 

services 

attacked 

2014      

Drinking 

water utility 

cellular 

2016 United 

States 

LN  Wireless compromise 

(T0860) 
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routers 

hacked 

Suspicious 

network 

traffic data 

undisclosed 

location 

2016 United 

States 

LN   malware 

“Kemuri” 

Water 

Company 

2016 United 

States 

SN Organized 

group 

Exploit public-facing 

application (T0819) 

SQL 

injection and 

phishing 

Clark 

County 

water hack 

2016 United 

States 

   Ransomware 

City of 

Atlanta 

ransomware 

attack 

 

2018 United 

States 

CN Organized 

group/cyberc

riminals 

-Drive-by-compromise 

(T0817) / Spearphishing 

attachment (T0865) 

Ransomware 

Crypto 

miner 

European 

water utility 

company 

2018 Europe SN  Drive-by compromise 

(T0817) 

Cryptocurre

ncy malware 

(Cryptojacki

ng attacks) 

Onslow 

Water and 

Sewer 

Authority 

2018 United 

States 

CN Organized 

groups/cyber

criminals 

 Ryuk 

Ransomware 

attack 

Riviera 

Beach Water 

Utility 

ransomware 

2019 United 

States 

CN,LN

, FN 

Organized 

groups 

Spearphishing 

attachment (T0865) 

Ransomware 

attack 

Israel’s 

water system 

facilities 

2020 Israel LN Nation state  Targeted 

attack 

Israel’s 

agricultural 

water pumps 

2020 Israel     

Recycled 

water 

reservoir 

2020 Israel     

Volue ASA 

Ransomware 

attack 

2021 Norway CN Unknown Spearphishing (T0865) Ransomware 

attack 

San 

Francisco 

Bay Area 

water 

treatment 

incident 

 

2021 United 

States 

LN Unknown Exploit public-facing 

application (T0819) 

 

Florida 

Water 

Treatment 

Plant 

2021 United 

States 

SN Unknown -Exploit public-facing 

application (T0819) 

-Exploitation of remote 

services (T0866) 

 

 

Analysis of Cyberattacks  

This section provides an analysis of cybersecurity incidents from different perspectives (e.g., 

cyber threat actors, targets, techniques, impact, etc). Table  shows the number of cybersecurity 
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incidents and their attack techniques, targeted components, and impacts. Using our 

investigation of these cybersecurity incidents, we present the following key attributes, and their 

patterns and trends that be used for defence and threat intelligence in the water sector and other 

CIs. 

 

1. Threat actors  

Figure 3.1 represents the threat actors for the cybersecurity incidents reviewed in the previous 

section. When analysing trends from threat actors, it is also important to note the motivation 

behind these attacks. We found i individual (both internal and external), j organized groups, k 

nation state, l unknown threat actors. Many individuals carried out attacks due to personal 

reasons for either financial gain or as methods of retribution. 

 

Figure 3.1 Threat actors 

 

2. Initial access  

The initial access techniques from the MITRE ATT&CK and ATT&CK ICS Frameworks  is 

used when categorising the techniques identified from each cybersecurity incident within 

Section 5 (Mitre 2022a, 2022b). Figure 3.2 details the attack techniques used in the 

cybersecurity incidents in Table . 5 of the incident analyzed utilized an internet accessible 

device, y took advantage of a wireless compromise, z of the attacks involved exploit public-

facing application, x incidents used spear phishing, and y others used drive-by -compromise.  

 

Figure 3.2 Initial access techniques 

 

3. Target layers  
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Figure 3.3 depicts the distribution of cybersecurity incidents by the ICS target layer. X of water 

sector incidents targeted the corporate network layer, y the supervisory network, z the local 

control network, but k targeted the field device network. 

 

Figure 3.3 Target layers 

 

 

 

Conclusions 

 

Process surveillance and efficient control are essential for achieving the requirements in 

wastewater treatment. The digital tools that can be used in the water sector are numerous, but 

very useful are the software sensors that can be used in surveillance and control. The need for 

software sensors arises from the fact that physical sensors (e.g., for the organic load) are 

inexistent of very expensive. 

Process surveillance and control are sufficient for obtaining a good quality of the effluent, but 

they do not protect the plant from cyber-attacks, and they must be coupled with cybersecurity 

procedures. It is thus important that the industry understands the risks and act accordingly. In 

addition, materials/classes on process surveillance, control and cybersecurity must be 

developed and used for training the wastewater treatment engineers. 
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