

Virtual sensors and Process Control

Harsha Ratnaweera Professor, Norwegian University of Life Sciences harsha@nmbu.no

Acknowledgement: selected slides from Dr Abhilash Nair

BigData in process surveillance

- Virtual sensors
- Validation of measurements
- Estimation of missing parameters
- Process analytics

Virtual sensors (software sensors)

Typical example: measurement of SS via tuirbidity

SS = *f* (Turbidity)

Scanning spectroscopy

Wavelength [nm]

CONTRACTOR OF

 [™] [™]

Multiple parameters with one physical probe

Hybrid sensors **Primary variables Secondary variables** (Hybrid sensors) (physical probes) • Hard-to-measure · Easy-to-measure Expensive ٠ Reliable • High maintenance costs · Low capital costs · Time delayed-response Low maintenance Suspende d Solids Carbon (COD, BOD, TOD) Flowrate Level pН **HYBRID SENSOR** Phosphorus Conductivit (PO_4-P, TP) Chemical у Redox Dosage potential Nitrogen UV (NH_4-N, NO_3-N, TN) Absorbance Dissolved Oxygen Turbidity Residual Chlorine and more.... Fluorescen ce

Virtual /Hybrid sensors

Future of virtual and hybrid sensors

- Microbiological water quality
- Disinfection by products
- Emerging contaminants
- Water quality models for distribution pipes and sewers

Combination of UV-VIS-Fluorescence spectra...

- Yes, if we have good and well-calibrated models
 - -But not all the processes and parameters can be predicted
- Machine learning / AI is a new possibility

Validation of measurements

- Online sensors: 24/7? 365d?: Calibration, cleaning, drifting adjustment
- Hardware error limits are often not adequate (0<pH<14)
- Moving error limits, based on models or historical data
- If not validates, provide a best possible estimate
- Forecasting of effluent quality

Example: use of online instruments at a drinking water plant: Activated Carbon filter

Process analytics

SUF I WARE SENSURS				DU	INLET SENSURS						
TP INLET 7.3	TP OUTLET 0.97	COD INLET 501.2	COD INLET 290.7	TP REMOVAL (%) 86.8 94.9 94.9	SS REMOVAL	POLYMER DOSERING	FLOWRATE 341.9	LEVEL 635.8	REDOX -415.0	CONDUCTIVITY 710	PH 7.40
	MG/L			COD REMOVAL (%)	CHEMICALS SAVED (%)	PAX DOSERING					

Forecast results (total phosphorus)

UNIVERSITAS

<u>∔</u>вј м†ј

Outline

- What is process control
- How does it work: in everyday life, examples of control elements, structures
- Why do we need process control in W&WWT?
- Examples

What is Process Control?

Methods and techniques used in systems to automatically correct their own behavior so that specifications for this behavior are satisfied.

Techniques implemented in process to achieve stable performance.

Beigler L.T. Chemical Process Design 1st Edition

Automating processes for consistency, economy and safety which could not be achieved purely by human manual control

Business Dictionary

System used to keep key process-operating parameters within narrow bounds of the reference value or setpoint.

Werther, Samuel P. Process Control: Problems, Techniques, and Applications

Elements of Process Control

- Online Sensors
- Controller
- Actuator
- Control Algorithm

Outline

- What is process control
- How does it work: in everyday life, examples of control elements, structures
- Why do we need process control in W&WWT?
- Examples

Process Control in Everyday Life!

Getting the right temperature

Elements of Process Control

Control Diagram

Control Diagram

Examples of Control Elements

PLC – Programmable Logic Controllers

Microcontroller (Arduino)

Single-board computers (Raspberry Pi)

Relays

PAC – Programmable Automation Computer

Control Valve/ Positioner

Variable Frequency Drive

Aeration Pump

Control Structure

Control Structure

Examples

* Ratnaweera & H. Fettig J. (2015) State of the Art of Online Monitoring and Control of the Coagulation Process, Water, 7(11), 6574-6597.

Control Algorithm

ON-OFF Control

PI Control

MATHEMATICAL EXPRESSION

$$u(t) = u_0 + K_C e(t) + \frac{1}{T_I} \int e(t) dt$$

 K_C = Proportional Constant

 T_I = Integral – Time Constant

TUNING METHODS

- 1. Ziegler-Nichols method
- 2. Cohen-Coon
- 3. Relay (Åström–Hägglund) method
- * Finn Haugen, 'Basic DYNAMICS and CONTROL', ISBN 978-82-91748-13-9

MPC Control Model Predictive Control

MATHEMATICAL EXPRESSION

$$u(t) = \min_{u} \sum_{i=0}^{n_p} w_x e_i^2 + w_u \Delta u_i^2$$

$$e_i = SP_i - y_i$$

 $y_i = f(u_i)$

MPC TYPES

- 1. Linear MPC
- 2. Non-Linear MPC
- 3. Adaptive MPC

Terminologies

PLC	-	PROGRAMMABLE LOGIC CONTROLLERS
PAC	-	PROGRAMMABLE AUTOMATION COMPUTER
НМІ	-	HUMAN MACHINE INTERFACE
RTU	-	REMOTE TELEMETRY UNIT
I/O	-	INPUT OUTPUT MODULE
DCS	-	DISTRIBUTED CONTROL SYSTEM
SCADA	-	SUPERVISORY CONTROL AND DATA ACQUISITION

Commercial SCADA architecture

Network Architecture in SCADA

HMI Plant 1

HMI Plant 2

192.168.2.6 (X2 control 7) - VNC View ΟX ANAEROBIC Orecover VFA 0.00 pH 7.61 mg/L NH 45.99 DO 2.20 mg/L NO 0.00 mg/L mg/L 215 PO 39.84 mS/m ma/L K- START

HMI Plant 3

Control Room – Pre Digital Era

Coal Power Plant Ref: <u>http://power-controlsystem.com/</u>

Control Room – Digital Era

Ref: TS Electro

Example: use of online instruments at a drinking water plant: Activated Carbon filter

Outline

- What is process control
- How does it work: in everyday life, examples of control elements, structures
- Why do we need process control in W&WWT?
- Examples

Why do we need Process Control in Treatment Plants?

WATER INDUSTRY PROCESS CONTROL

Influent Fluctuations

Aeration Basin without control

Outline

- What is process control
- How does it work: in everyday life, examples of control elements, structures
- Why do we need process control in W&WWT?
- Examples

Case I: Dissolved Oxygen Control

Energy usage in WWTP

Biological WWTP

DO control (PI) PI (DO) ·(H) ANOXIC AEROBIC 0 00 SETTLER 0 4.5 DO CONTROL NO CONTROL 4 3.5 (T/bm) OD 2 1.5 1 0.5 2 4 6 8 10 12 14 Time (days) 5 ×10⁴ DO CONTROL 4.5 \sim 4 -3.5 -Mol J 2.5 4 2 1.5 └─ 0 2 4 8 10 12 14

6 Time (days)

Ammonia control (MPC)

Case II: Coagulant Dosing Control

Flow Proportional Dosing

Most DWTPs and WWTPs use flow proportional dosing

... but water quality parameters vary not proportionally to each other

Multi-parameter based optimal dosing control

D=f(Q, pH, P, SS, temp, Cond, etc)

Energy Savings with dosing control

11 years of full scale results: 32% reduction of coagulants

Coagulant costs = 300,000 USD/year Savings= 100 000 USD/year (Q=50 000m3/d)

Virtual sensors – example

COLLINARE SENSORS				20							
TP INLET 7.3	TP OUTLET 0.97	COD INLET 501.2	COD INLET TP RE 290.7 COD RE MG/L	TP REMOVAL (%) 86.8	SS REMOVAL	POLYMER DOSERING 74	FLOWRATE 341.9	ATE LEVEL 1.9 635.8	REDOX -415.0	CONDUCTIVITY 710	рн 7.40
				COD REMOVAL (%) 62.5	CHEMICALS SAVED (%)	PAX DOSERING	м3/т				

Process optimization: example

