

Online surveillance and control of emerging contaminants Agnieszka Cuprys

UNIVERSITIAS Tab. 10: List of substances proposed for the first Voluntary Groundwater Watch List

Substance Name	Group of substance	Acronym	Sub-group
Perfluorododecanoic Acid (L)	PFAS	PFDoA	PFCAs
Perfluoroundecanoic Acid (L)	PFAS	PFUnA	PFCAs
Clonidol	Pharmaceutical		
Crotamiton	Pharmaceutical		
Amidozoic Acid	Pharmaceutical		
Sulfadiazin	Pharmaceutical		
Primidone	Pharmaceutical		
Sotalol	Pharmaceutical		
Ibuprofen	Pharmaceutical		
Erythromycin	Pharmaceutical		
Clarithromycin	Pharmaceutical		
Further candidates			
4:2 Fluortelomerphosphatemonoester (S)	PFAS	4:2 monoPAP	monoPAP
Perfluorodecyl Phosphonic Acid (L)	PFAS	PFDPA	PFPAs
Perfluorooctyl Phosphonic Acid (L)	PFAS	PFOPA	PFPAs
6:2 Fluortelomerphosphatemonoester (S)	PFAS	6:2 monoPap	monoPAP

Drinking Water Directive

Chemical parameters

Water quality guidelines

Watch list of substances for Union-wide monitoring as set out in Article 8b of Directive 2008/105/EC

Name of substance/group of substances	CAS number (¹)	EU number (²)	Indicative analytical method (³) (⁴)	Maximum acceptable method detection limit (ng/l)
Metaflumizone	139968-49-3	604-167-6	LLE-LC- MS-MS or SPE–LC- MS-MS	65
Amoxicillin	26787-78-0	248-003-8	SPE-LC- MS-MS	78
Ciprofloxacin	85721-33-1	617-751-0	SPE-LC- MS-MS	89
Sulfamethoxazole (⁵)	723-46-6	211-963-3	SPE-LC- MS-MS	100
Trimethoprim (⁵)	738-70-5	212-006-2	SPE-LC- MS-MS	100
Venlafaxine and	93413-69-5	618-944-2	SPE-LC-	6
O-desmethylvenlafaxine (⁶)	93413-62-8	700-516-2	MS-MS	
Azole compounds ()			SPE-LC- MS-MS	
Clotrimazole	23593-75-1	245-764-8		20
Fluconazole	86386-73-4	627-806-0		250
Imazalil	35554-44-0	252-615-0		800
Ipconazole	125225-28-7	603-038-1		44
Metconazole	125116-23-6	603-031-3		29
Miconazole	22916-47-8	245-324-5		200
Penconazole	66246-88-6	266-275-6		1 700
Prochloraz	67747-09-5	266-994-5		161
Tebuconazole	107534-96-3	403-640-2		240
Tetraconazole	112281-77-3	407-760-6		1 900
Dimoxystrobin	149961-52-4	604-712-8	SPE-LC- MS-MS	32
Famoxadone	131807-57-3	603-520-1	SPE-LC- MS-MS	8,5

Evolution of contaminant detection techniques in water analysis application

3

Norwegian University of Life Sciences

Zulkifli et al. (2018), https://doi.org/10.1016/j.snb.2017.09.078

https://www.pasco.com/products/guides/what-is-spectroscopy

Monitoring the removal of emerging trace organic contaminants in wastewater treatment plants using fluorescence EEMs

5

Norwegian University of Life Sciences

Sgroi et al. (2017), https://doi.org/10.1016/j.jhazmat.2016.05.035

Which parameter do you want to measure?

6

Fluorometer for measurements of PAH (polycyclic aromatic hydrocarbons)

Benefits

- Without sampling and preparation of test samples
- Real time sensor
- Without reagents
- High sensitivity and selectivity
- Optical window with nano coating

Applications

- Drinking water
- Wastewater
- Airports
- Cooling water
- Desalination plants
- Refineries
- Pipeline monitoring
- Bilge water monitoring
- Exhaust gas cleaning with approval for ship use according to IMO regulation MEPC.184(59)

https://www.tfios.de/en/enviroflu.html

Biosensors

Ejeian et al. (2018), https://doi.org/10.1016/j.bios.2018.07.019

https://doi.org/10.1016/i.bios.2018.07.019

Biosensors

Sensor placements approach

Sensor responses (Turbidity, pH, Conductivity and Temperature) for glyphosate (concentrations: 0.8, 2.0, 4.0 mg/L)

11

Che et al. (2015), https://doi.org/10.3390/w7041422

Sensor placements approach

Data-driven soft(ware) sensors

Soft sensor principle

Monitoring system of total phosphorous and ammonia nitrogen concentrations in effluent

Norwegian University of Life Sciences

13 Paulsson et al. (2014), <u>https://doi.org/10.3390/s141017864</u> Han et al. (2018), <u>https://doi.org/10.1016/j.cjche.2018.03.027</u>

Norwegian University of Life Sciences

Ye et al. (2020), https://doi.org/10.1016/j.scitotenv.2019.134279

Al models and machine learning algorithms in wastewater treatment

Ye et al. (2020), https://doi.org/10.1016/j.scitotenv.2019.134279

Norwegian University of Life Sciences

15

AI models and machine learning algorithms

HORIZON 2020

Development of Emerging Contaminants – Hybrid Soft Sensor for on-line monitoring of contaminants of emerging concern in water

Hybrid sensor Norwegian University of Life Sciences

Thank you!

